
www.manaraa.com

LA-UR-98-2249
Approved for public release; distribution is unlimited

A Computational Study of Routing

Algorithms for Realistic Transportation

Networks

Riko Jacob, Madhav Marathe and Kai Nagel

LOS ALAMOS
N A T I O N A L L A B O R A T O R Y
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of
California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the
publisher recognizes that the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce
the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos
National Laboratory requests that the publisher identify this article as work performed under the auspices of the
U.S. Department of Energy. The Los Alamos National Laboratory strongly supports academic freedom and a re-
searcher’s right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication
or guarantee its technical correctness.

www.manaraa.com

A Computational Study of Routing Algorithms for Realistic

Transportation Networks

RIKO JACOB 1 MADHAV V. MARATHE 1 KAI NAGEL 1
July 1, 1999

Abstract

We carry out an experimental analysis of a number of shortest path (routing)
algorithms investigated in the context of the TRANSIMS (TRansportation ANaly-
sis and SIMulation System) project. The main focus of the paper is to study how
various heuristic as well as exact solutions and associated data structures affect the
computational performance of the software developed for realistic transportation
networks. For this purpose we have used a road network representing with high
degree of resolution the Dallas Ft-Worth urban area.
We discuss and experimentally analyze various one-to-one shortest path algo-

rithms. These include classical exact algorithms studied in the literature as well as
heuristic solutions that are designed to take into account the geometric structure of
the input instances.
Computational results are provided to empirically compare the efficiency of var-

ious algorithms. Our studies indicate that amodifiedDijkstra’s algorithm is compu-
tationally fast and an excellent candidate for use in various transportation planning
applications as well as ITS related technologies.

Keywords: Experimental Analysis, Transportation Planning, Design and Analysis
of Algorithms, Network Design, Shortest Paths Algorithms.

AMS 1991 Subject Classification: 68Q25, 68Q45, 90B06, 68R10

1Los Alamos National Laboratory, P.O. Box 1663, MS M997, Los Alamos, NM 87545. Email: fmarathe,
kaig@lanl.gov. Research supported by the Department of Energy under Contract W-7405-ENG-36.

2Part of the work done while at Los Alamos National Laboratory, Los Alamos, NM 87545. and supported by
the Department of Energy under Contract W-7405-ENG-36. Current Address: BRICS, Department of Computer
Science, University of Aarhus Ny Munkegade Bldg. 540, DK-8000 Århus C, Denmark. Email: rjacob@brics.dk.

3Preliminary version of the paper was presented at the 2nd Workshop on Algorithmic Engineering (WAE),
Saarbrücken, Germany.

1

www.manaraa.com

1 Introduction

TRANSIMS is a multi-year project at the Los Alamos National Laboratory and is funded by the

Department of Transportation and by the Environmental Protection Agency. Themain purpose

of TRANSIMS is to develop new methods for studying transportation planning questions. A

prototypical question considered in this context would be to study the economic and social

impact of building a new freeway in a large metropolitan area. We refer the reader to [TR+95a]

and the web-site http://transims.tsasa.lanl.gov to obtain extensive details about the

TRANSIMS project.

The main goal of the paper is to describe the computational experiences in engineering var-

ious path finding algorithms in the context of TRANSIMS. Most of the algorithms discussed

here are not new; they have been discussed in the Operations Research and Computer Science

community. Although extensive research has been done on theoretical and experimental eval-

uation of shortest path algorithms, most of the empirical research has focused on randomly

generated networks and special classes of networks such as grids. In contrast, not much work

has been done to study the computational behavior of shortest path and related routing algo-

rithms on realistic traffic networks. The realistic networks differ from random networks as well

as from homogeneous (structured networks) in the following significant ways:

(i) Realistic networks typically have a very low average degree. In fact in our case the average

degree of the network was around 2.6. Similar numbers have been reported in [ZN98]. In

contrast random networks used in [Pa84] have in some cases average degree of up to 10.

(ii) Realistic networks are not very uniform. In fact, one typically sees one or two large clusters

(downtown and neighboring areas) and then small clusters spread out throughout the entire

area of interest.

(iii) For most empirical studies with random networks, the edge weights are chosen indepen-

dently and uniformly at random from a given interval. In contrast, realistic networks typically

have short links.

With the above reasons and specific application in mind, the main focus of this paper is to

carry out experimental analysis of a number of shortest path algorithms on real transportation

network and subject to practical constraints imposed by the overall system. See also Section 6,

the point “Peculiarities of the network and its Effect” for some intuition what features of the

network we consider crucial for our observations.

The rest of the report is organized as follows. Section 2 contains problem statement and

related discussion. In Section 3, we discuss the various algorithms evaluated in this paper. Sec-

tion 4 summarizes the results obtained. Section 5 describes our experimental setup. Section 6

describes the experimental results obtained. Section 7 contains a detailed discussion of our re-

sults. Finally, in Section 8 we give concluding remarks and directions for future research. We

have also included an Appendix (Section 8.1) that describes the relevant algorithms for finding

shortest paths in detail.

2

www.manaraa.com

2 Problem specification and justification

The problems discussed above can be formally described as follows: letG(V;E) be a (un)directed
graph. Each edge e 2 E has one attributew(e) denoting the weight (or cost) of the edge e. Here,
we assume that the weights are non-negative floating point numbers.

Definition 2.1 One-to-One Shortest Path:

Given a directed weighted, graph G, a source destination pair (s; d) find a shortest (with respect to w)
path p in G from s to d.
Note that our experiments are carried out for shortest path between a pair of nodes, as

against finding shortest path trees. Much of the literature on experimental analysis uses the

second measure to gauge the efficiency. Our choice to consider the running time of the one-to-

one shortest path computation is motivated by the following observations:

1. In our settingwe need to compute shortest paths for roughly amillion travelers. In highly

detailed networks, most of these travelers have different starting points (for example, in

Portland we have 1.5 million travelers and 200 000 possible starting locations). Thus, for

any given starting location, we could re-use the tree computation only for about ten other

travelers.

2. Wewanted our algorithms to be extensible to take into account additional features/constraints

imposed by the system. For example, each traveler typically has a different starting time

for his/her trip. Since we use our algorithms for time dependent networks (networks

in which edge weights vary with time), the shortest path tree will be different for each

traveler. As a second example we need to find paths for travelers with individual mode

choices in a multi-modal network. Formally, we are given a directed labeled, weighted,

graph G representing a transportation network with the labels on edges representing the
various modal attributes (e.g. a label tmight represent a rail line). There the goal is to find
shortest (simple) paths subject to certain labeling constraints on the set of feasible paths.

In general, the criteria for path selection varies so much from traveler to traveler that the

additional overhead for the “re-use” of information is unlikely to pay off.

3. The TRANSIMS framework allows us to use paths that are not necessarily optimal. This

motivates investigation of very fast heuristic algorithms that obtain only near optimal

paths (e.g. the modified A� algorithm discussed here). For most of these heuristics, the
idea is to bias a more focused search towards the destination – thus naturally motivating

the study of one-one shortest path algorithms.

4. Finally, the networks we anticipate to deal with contain more than 80 000 nodes and

around 120 000 edges. For such networks storing all shortest path trees amounts to huge

memory overheads.

3

www.manaraa.com

3 Choice of algorithms

Important objectives used to evaluate the performance of the algorithms include (i) time taken

for computation on real networks, (ii) quality of solution obtained, (iii) ease of implementation

and (iv) extensibility of the algorithm for solving other variants of the shortest path problem. A

number of interesting engineering questions were encountered in the process. We experimen-

tally evaluated a number of variants of Dijkstra’s algorithm. The basic algorithm was chosen

due to the recommendations made in Cherkassky, Goldberg and Radzik [CGR96] and Zhan

and Noon [ZN98]. The algorithms studied were:� Dijkstra’s algorithm with Binary Heaps [CGR96],� A� algorithm proposed in AI literature and analyzed by Sedgewick and Vitter [SV86],� a modification of the A� algorithm that we will describe below, and alluded to in [SV86].
A bidirectional version of Dijkstra’s algorithm described in [Ma, LR89] and analyzed by [LR89]

was also considered. We briefly recall the A� algorithm and the modification proposed. Details
of these algorithms can be found in the Appendix.

When the underlying network is (near) Euclidean it is possible to improve the average case

performance of Dijkstra’s algorithm by exploiting the inherent geometric information that is

ignored by the classical path finding algorithms. The basic idea behind improving the perfor-

mance of Dijkstra’s algorithm is from [SV86, HNR68] and can be described as follows. In order

to build a shortest path from s to t, we use the original distance estimate for the fringe vertex
such as x, i.e. from s to x (as before) plus the Euclidean distance from x to t. Thus we use global
information about the graph to guide our search for shortest path from s to t. The resulting
algorithm runs much faster than Dijkstra’s algorithm on typical graphs for the following in-

tuitive reasons: (i) The shortest path tree grows in the direction of t and (ii) The search of the
shortest path can be terminated as soon as t is added to the shortest path tree.
We note that the above algorithms, only require that the Euclidean distance between any

two nodes is a valid lower bound on the actual shortest distance between these nodes. This is

typically the case for road networks; the link distance between two nodes in a road network

typically accounts for curves, bridges, etc. and is at least the Euclidean distance between the

two nodes. Moreover in the context of TRANSIMS, we need to find fastest paths, i.e. the cost

function used to calculate shortest paths is the time taken to traverse the link. Such calculations

need an upper bound on the maximum allowable speed. To adequately account for all these

inaccuracies, we determine an appropriate lower bound factor between Euclidean distance and

assumed delay on a link in a preprocessing step.

We can now modify this algorithm by giving an appropriate weight to the distance fromx to t. By choosing an appropriate multiplicative factor, we can increase the contribution of
the second component in calculating the label of a vertex. From a intuitive standpoint this

corresponds to giving the destination a high potential, in effect biasing the search towards

4

www.manaraa.com

the destination. This modification will in general not yield shortest paths, nevertheless our

experimental results suggest that the errors produced can be kept reasonably small.

4 Summary of Results

We are now ready to summarize the main results and conclusions of this paper. As already

stated the main focus of the paper is the engineering and tuning of well known shortest path

algorithms in a practical setting. Another goal of this paper to provide reasons for and against

certain implementations from a practical standpoint. We believe that our conclusions along

with the earlier results in [ZN98, CGR96] provide practitioners a useful basis to select appro-

priate algorithms/implementations in the context of transportation networks. The general re-

sults/conclusions of this paper are summarized below.

1. We conclude that the simple Binary heap implementation of Dijkstra’s algorithm is a

good choice for finding optimal routes in real road transportation networks. Specifically,

we found that certain types of data structure fine tuning did not significantly improve the

performance of our implementation.

2. Our results suggest that heuristic solutions using the underlying geometric structure of

the graphs are attractive candidates for future research. Our experimental results moti-

vated the formulation and implementation of an extremely fast heuristic extension of the

basic A� algorithm. The parameterized time/quality trade-off the algorithm achieves in
our setting appears to be quite promising.

3. Our study suggests that bidirectional variation of Dijkstra’s algorithm is not suitable for

transportation planning. Our conclusions are based on two factors: (i) the algorithm is not

extensible to more general path problems and (ii) the running time does not outperform

the other exact algorithms considered.

5 Experimental Setup and Methodology

In this sectionwe describe the computational results of our implementations. In order to anchor

research in realistic problems, TRANSIMS uses example cases called Case studies (See [CS97]

for complete details). This allows us to test the effectiveness of our algorithms on real life data.

The case study just concluded focused on Dallas Fort-Worth (DFW) Metropolitan area and was

done in conjunction with Municipal Planning Organization (MPO) (known as North Central

Texas Council of Governments (NCTCOG)). We generated trips for the whole DFW area for a

24 hour period. The input for each traveler has the following format: (starting time, starting

location, ending location).4 There are 10.3 million trips over 24 hours. The number of nodes

4This is roughly correct, the reality is more complicated, [NB97, CS97].

5

www.manaraa.com

and links in the Dallas network is roughly 9863, 14750 respectively. The average degree of a

node in the network was 2.6. We route all these trips through the so-called focused network. It

has all freeway links, most major arterials, etc. Inside this network, there is an area where all

streets, including local streets, are contained in the data base. This is the study area. We initially

routed all trips between 5am and 10am, but only the trips which went through the study area

were retained, resulting in approx. 300 000 trips. These 300 000 trips were re-planned over and

over again in iteration with the micro-simulation(s). For more details, see, e.g., [NB97, CS97].

A 3% random sample of these trips were used for our computational experiments.

Preparing the network. The data received from DFW metro had a number of inadequacies

from the point of view of performing the experimental analysis. These had to be corrected

before carrying out the analysis. Wemention a few important ones here. First, the networkwas

found to have a number of disconnected components (small islands). We did not consider (o; d)
pairs in different components. Second, a more serious problem from an algorithmic standpoint

was the fact that for a number of links, the length was less than the actual Euclidean distance

between the the two end points. In most cases, this was due to an artificial convention used

by the DFW transportation planners (so-called centroid connectors always have length 10 m,

whatever the Euclidean distance), but in some cases it pointed to data errors. In any case,

this discrepancy disallows effective implementation of A� type algorithms. For this reason
we introduce the notion of the “normalized” network: For all links with length less than the

Euclidean distance, we set the reported length to be equal to the Euclidean distance. Note here,

that we take the Euclidean distance only as a lower bound on shortest path in the network.

Recall that if we want to compute fastest path (in terms of time taken) instead of shortest,

we also have to make assumptions regarding the maximum allowable speed in the network

to determine a conservative lower bound on the minimal travel time between points in the

network.

Preliminary experimental analysis was carried out for the following network modifications

that could be helpful in improving the efficiency of our algorithms. These include: (i) Removing

nodes with degrees less than 3: (Includes collapsing paths and also leaf nodes) (ii) Modifying

nodes of degree 3: (Replace it by a triangle)

Hardware and Software Support. The experiments were performed on a Sun UltraSparc CPU

with 250 MHz, running under Solaris 2.5. 2 gigabyte main memory were shared with 13 other

CPUs; our own memory usage was always 150 MB or less. In general, we used the SUNWork-

shop CC compiler with optimization flag -fast. (We also performed an experiment on the influ-

ence of different optimization optionswithout seeing significant differences.) The advantage of

the multiprocessor machine was reproducibility of the results. This was due to the fact that the

operating systemdoes not typically need to interrupt a live process; requests by other processes

were assigned to other CPUs.

Experimental Method 10,000 arbitrary plans were picked from the case study. We used the

timing mechanism provided by the operating system with granularity .01 seconds (1 tick). Ex-

periments were performed only if the system load did not exceed the number of available

6

www.manaraa.com

processors, i.e. processors were not shared. As long as this condition was not violated during

the experiment, the running times were fairly consistent, usually within relative errors of 3%.

We used (a subset) of the following values measurable for a single or a specific number of

computations to conclude the reported results� (average) running time excluding i/o� number of fringe/expanded nodes� pictures of fringe/expanded nodes� maximum heap size� number of links and length of the path
Software Design We used the object oriented features as well as the templating mechanism

of C++ to easily combine different implementations. We also used preprocessor directives and

macros. As we do not want to introduce any unnecessary run time overhead, we avoid for

example the concept of virtual inheritance. The software system has classes that encapsulate

the following elements of the computation:� network (extensibility and different levels of detail lead to a small, linear hierarchy)� plans: (o; d) pairs and complete paths with time stamps� priority queue (heap)� labeling of the graph and using the priority queue� storing the shortest path tree� Dijkstra’s algorithm
As expected, this approach leads to an apparent overhead of function calls. Nevertheless,

the compiler optimization detects most such overheads. Specifically, an earlier non templated

implementation achieved roughly the same performance as the corresponding instance of the

templated version. The results were consistent with similar observations when working on

mini-examples. The above explanation was also confirmed by the outcome of our experiments:

We observed, that reducing the instruction count does not reduce the observed running time as

might be expected. Assuming we would have a major overhead from high level constructs, we

would expect to see a strong influence of the number of instructions executed on the running

time observed.

6 Experimental Results

Design Issues about Data Structures We begin with the design decisions regarding the data

structures used.

7

www.manaraa.com

Anumber of alternative data structures were considered to investigate if they results in sub-

stantial improvement in the running time of the algorithm. The alternatives tested included

the following. (i) Arrays versus Heaps , (ii) Deferred Update, (iii) Hash Tables for Storing

Graphs, (iv) Smart Label Reset (v) Heap variations, and (vi) struct of arrays vs. array of structs.

Appendix contains a more detailed discussion of these issues. We found, that indeed good

programming practice, using common sense to avoid unnecessary computation and textbook

knowledge on reasonable data structures are useful to get good running times. For the alter-

natives mentioned above, we did not find substantial improvement in the running time. More

precisely, the differences we found were bigger than the unavoidable noise on a multi-user

computing environment. Nevertheless, they were all below 10% relative difference. A brief

discussion of various data structures tried can be found in the Appendix.

Analysis of results. The plain Dijkstra, using static delays calculated from reported free flow

speeds, produced roughly 100 plans per second. Figure 1 illustrates the improvement obtained

by the A� modification. The numbers shown in the corner of the network snapshots tell an
average (of 100 repetitions to destroy cache effects between subsequent runs) running time for

this particular O-D-pair, in system ticks. It also gives the number of expanded and fringe nodes.

Note that we have used different scales in order to clearly depict the set of expanded nodes.

Overall we found that A� on the normalized network (having removed network anomalies as
explained above) is faster than basic Dijkstra’s algorithm by roughly a factor of 2.

Modified A� (Overdo Heuristic) Next consider the modified A� algorithm – the heuristic is
parameterized by the multiplicative factor used to weigh the Euclidean distance to the des-

tination against the distance from the source in the already computed tree. We call this the

overdo parameter. This approach, can be seen as changing the conservative lower bound used

for in the A� algorithm into an “expected” or “approximated” lower bound. Experimental ev-
idence suggests that even large overdo factors usually yield reasonable paths. Note that this

nice behavior might fail as soon as the link delays are not at all directly related to the link

length (Euclidean distance between the endpoints), as might be expected in a network with

link lengths proportional to travel times in a partially congested city. As a result it is natural to

discuss the time/quality trade-off of the heuristic as a function of the overdo parameter. Figure 2

summarizes the performance. In the figure the X-axis represents the overdo factor, being varied
from 0 to 100 in steps of 1. The Y-axis is used for multiple attributes which we explain below.
First, the Y axis is used to represent the average running time per plan. For this attribute, we
use the log scale with the unit denoting 10 milliseconds. As depicted by the solid line, the av-
erage time taken without any overdo at all is 12.9 milliseconds per plan. This represents the

base measurement (without taking the geometric information into account, but including time

taken for computing of Euclidean distances). Next, for overdo value of 10 and 99 the running

times are respectively 2.53 and .308 milliseconds. On the other hand, the quality of the solution

produced by the heuristic worsens as the overdo factor is increased. We used two quantities

to measure the error — (i) the maximum relative error incurred over 10000 plans and (ii) the

8

www.manaraa.com

ticks 2.40, #exp 6179, #fr 233

ticks 0.64, #exp 1446, #fr 316

Figure 1: Figure illustrating the number of expanded nodes while running (i) Dijkstra (ii) A�
algorithms. The figures clearly show the A� heuristic is much more efficient in terms of the
nodes it visits. In both the graphs, the path is outlined as a dark line. The fringe nodes and the
expanded nodes are marked as dark spots. The underlying network is shown in light grey. The
source node is marked with a big circle, the destination with a small one. Notice the different
scales of the figures. 9

www.manaraa.com

0.0001

0.001

0.01

0.1

1

0 10 20 30 40 50 60 70 80 90 100

time
max_err

0.0
0.01
0.02
0.05

0.1

Figure 2: Figure illustrating the trade-off between the running time and quality of paths as a
function of the overdo-paramameter. The X axis represents the overdo factor from 0 to 100.
The Y axis is used to represent three quantities plotted on a log scale — (i) running time, (ii)
Maximum relative error and (iii) fraction of plans with relative error greater than a threshold
value. The threshold values chosen are 0%, 1%, 2%, 5%, 10%.

0.0001

0.001

0.01

0.1

1

0 1 2 3 4 5 6 7 8 9 10

time
max_err

0.0
0.01
0.02
0.05

0.1

Figure 3: Figure illustrating the trade-off between the running time and quality of paths as
a function of the overdo-parameter on the normalized network. The meaning of the axis and
depicted things is the same as in the previous figure.

10

www.manaraa.com

fraction of plans with errors more than a given threshold error. Both types of errors are shown

on the Y axis. The maximum relative error (plot marked with *) ranges from 0 for overdo factor 0
to 16% for overdo value 99. For the other error measure, we plot one curve for each threshold

error of 0%, 1%, 2%, 5%, 10%. The following conclusions can be drawn from our results.

1. The running times improve significantly as the overdo factor is increased. Specifically the

improvements are a factor 5 for overdo parameter 10 and almost a factor 40 for overdo

parameter 99.

2. In contrast, the quality of solution worsensmuch more slowly. Specifically, the maximum

error is no worse than 16% for the maximum overdo factor. Moreover, although the

number of erroneous plans is quite high (almost all plans are erroneous for overdo factor

of 99), most of them have small relative errors. To illustrate this, note that only around

15% of them have relative error of 5% or more.

3. The experiments and the graphs suggest an “optimal” value of overdo factor for which

the running time is significantly improvedwhile the solution quality is not too bad. These

experiments are a step in trying to find an empirical time/performance trade-off as a

function of the overdo parameter.

4. As seen in Figure 3 the overall quality of the results shows a similar tradeoff if we switch

to the normalized network. The only difference is that the errors are reduced for a given

value of the overdo parameter.

5. As depicted in Figure 4, the number of plans worse than a certain relative error decreases

(roughly) exponentially with this relative error. This characteristic does not depend on

the overdo factor.

6. We also found that the near-optimal paths produced were visually acceptable and rep-

resented a feasible alternative route guiding mechanism. This method finds alternative

paths that are quite different than ones found by the k-shortest path algorithms and seem
more natural. Intuitively, the k-shortest path algorithms, find paths very similar to the
overall shortest path, except for a few local changes.

7. The counterintuitive local maximum for overdo value 3.2 in Figure 3 can be explained by

the example depicted in Figure 5.� the optimal length is 21,� for overdo parameter 2 we get a solution of length 22 Here node B gets insertedwith
a value of 24 opposed to values 29 and 25 of A and C. As these values for A and B

are bigger than the resulting path using B, this path stays final.� for overdo parameter 4 we get again a solution of length 21. This stems from the fact
that now C gets inserted into the heap with the value 33 where as B with a value of

40.

11

www.manaraa.com

1e-05

0.0001

0.001

0.01

0.1

1

0 0.01 0.02 0.03 0.04 0.05

overdo factor 3.0
overdo factor 2.0
overdo factor 1.5
overdo factor 1.2
overdo factor 1.1

Figure 4: The distribution of wrong plans for different overdo-parameters in the normalized
network for Dallas Ft-Worth. In X direction we change the “notion of a bad plan” in terms of
relative error, in Y direction we show the fraction of plans that is classified to be “bad” with the
current notion of “wrong”.

It is easy to see that such examples can be scaled and embedded into larger graphs. Since

the maximum error stems from one particular shortest path question, it is not too surpris-

ing to encounter such a situation.

Peculiarities of the network and its Effect In the context of TRANSIMS, where we needed to

find one-to-one shortest paths, we observed possibly interesting influence of the underlying

network and its geometric structure on the performance of the algorithms. We expect similar

characteristics to be visible in other road networks as well, possiblymodified by the existence of

rivers or other similar obstacles. Note that the network is almost Euclidean and (near) homoge-

nous to justify the following intuition: Dijkstra’s algorithm explores the nodes of a network in

a circular fashion. During the run we see roughly a disc of expanded nodes and a small ring

of fringe nodes (nodes in the heap) around them. For planar and near panar graphs it has

been observed that the heap size is O(pn) with high probability. This provides one possible
explanation of why the maximum heap sizes in our experiments was close to 500. In particular,

even if the area of the circular (in number of nodes) reaches the size of the network (10 000),

the ring of fringe nodes is roughly proportional to the circumference of the circular region (and

thus roughly proportional to
p10 000). We believe that this homogenous and almost Euclidean

structure is also the reason for our observations about the modified A� algorithm. The above
discussion provides at least an intuitive explanation ofwhy special algorithms such asA�might
perform better on Euclidean and close to Euclidean networks.

12

www.manaraa.com

(9,9)

(10,12)

(17,17)

(4,4)

(8,8)

(8,14)
AB

C

Figure 5: Example network having a local maximum for the computed path length for increas-
ing overdo parameter; the edges are marked with (Euclidean distance, reported length).

Effect ofMemory access times In our experimentswe observed, that changes in the implemen-

tation of the priority queue have minimal influence on the overall running time. In contrast,

the instruction count profiling (done with a program called “quantify”) pinpoints the priority

queue to be the main contributer to the overall number of instructions. Combining these two

facts, we conclude that the running time we observe is heavily dependent on the time it takes

to access the graph representation that do do not fit the cache. Thus the processor spends a

significant amount of time waiting.

We expect further improvement of the running time by concentrating on the memory ac-

cesses, for example by making the graph representation more compact, or optimize accesses

by choosing memory location of a node according to the topology of the graph. In general the

conclusions of our paper motivate the need for design and analysis of algorithms that take the

memory access latency into account.

7 Discussion of Results

First, we note that the running times for the plain Dijkstra are reasonable as well as sufficient in

the context of the TRANSIMS project. Quantitatively, this means the following: TRANSIMS is

run in iterations between the micro-simulation, and the planner modules, of which the short-

est path finding routine is one part. We have recently begun research for the next case study

project for TRANSIMS. This case study is going to be done in Portland, Oregon and was chosen

to demonstrate the validate our ideas for multi-modal time dependent networks with public

transportation following a scheduled movement. Our initial study suggests that we now take

.5 sec/trip as opposed to .01 sec/trip in the Dallas Ft-Worth case [Ko98]. All these extensions

are important from the standpoint of finding algorithms for realistic transportation routing

problems. We comment on this in some detail below. Multi-modal networks are an integral

part of most MPO’s. Finding optimal (or near-optimal) routes in this environment therefore

constitutes a real problem. In the past, solutions for routing in such networks was handled

13

www.manaraa.com

ticks 0.10, #exp 140, #fr 190
Figure 6: Figure illustrating two instances of Dijkstra’s algorithms with a very high overdo
parameter start at origin and destination respectively. One of them really creates the shown
path, the beginning of the other path is visible as a “cloud” of expanded nodes

in an ad hoc fashion. The basic idea (discussed in detail in [BJM98]) here is to use regular

expressions to specify modal constraints. In [BJM98, JBM98], we have proposed models and

polynomial time algorithms to solve this and related problems. Next consider another impor-

tant extension — namely to time dependent networks. We assume that the edge lengths are

modeled by monotonic non-decreasing, piecewise linear functions. These are called the link

traversal functions. For a function f associated with a link e = (a; b), f(x) denotes the time
of arrival at b when starting at time x at a. By using an appropriate extension of the basic
Dijkstra’s algorithm, one can calculate optimal paths in such networks. Our preliminary re-

sults on these topics in the context of TRANSIMS can be found in [Ko98, JBM98]. The Portland

network we are intending to use has about 120 000 links and about 80 000 nodes. Simulating

24 hours of traffic on this network will take about 24 hours computing time on our 14 CPUma-

chine. There will be about 1.5 million trips on this network. Routing all these trips should take

14

www.manaraa.com

1:5 � 106 trips � 0:5 sec/trip � 9 days on a single CPU and thus less than 1 day on our 14 CPU
machine. Since re-routing typically concerns only 10% of the population, we would need less

than 3 hours of computing time for the re-routing part of one iteration, still significantly less

than the micro-simulation needs.

Our results and the constraints placed by the functionality requirement of the overall sys-

tem imply that bidirectional version of Dijkstra’s algorithm is not a viable alternative. Two

reasons for this are: (i) The algorithm can not be extended in a direct way to path problems in a

multi-modal and time dependent networks, and (ii) the running times of A� is better than the
bidirectional variant; the modified A� is much more faster.
8 Conclusions

The computational results presented in the previous sections demonstrate that Dijkstra’s al-

gorithm for finding shortest paths is a viable candidate for compute route plans in a route

planning stage of a TRANSIMS like system. Thus such an algorithm should be considered

even for ITS type projects in which we need to find routes by an on-board vehicle navigation

systems.

The design of TRANSIMS lead us to consider one-to-one shortest path algorithms, as op-

posed to algorithms that construct the complete shortest-path tree from a given starting (or

destination) point. As is well known, the worst-case complexity of one-to-one shortest path

algorithms is the same as of one-to-all shortest path algorithms. Yet, in terms of our practical

problem, this is not applicable. First, a one-to-one algorithm can stop as soon as the destination

is reached, saving computer time especially when trips are short (which often is the case in our

setting). Second, since our networks are roughly Euclidean, one can use this fact for heuris-

tics that reduce computation time even more. The A� with an appropriate overdo parameter
apperas to be an attractive candidate in this regard.

Making the algorithms time-dependent in all cases slowed down the computation by a

factor of at most two. Since we are using a one-to-one approach, adding extensions that for

example include personal preferences (e.g. mode choice) are straightforward; preliminary tests

let us expect slow-downs by a factor of 30 to 50. This significant slowdown was caused by a

number of factors including the following:

(i) The network size increased by a factor of 4 and was caused by addition and splitting of

nodes and/or edges and adding public transportation. This was done to account for

activity locations, parking locations, adding virtual links joining these locations, etc.

(ii) The time dependency functions used to represent transit schedules and varying speed of

street traffic, implied increasedmemory and computational requirement. Initial estimates

are that the memory requirement increases by a factor of 10 and the computational time

increases by factor of 5. Moreover, different type of delay functions were used for induc-

15

www.manaraa.com

ing a qualitatively different exploration of the network by the algorithm. This seems to

prohibit keeping a small number of representative time dependency functions.

(iii) The algorithm for handling modal constraints works by making multiple copies of the

original network. The algorithm is discussed in [JBM98] and preliminary computational

results are discussed in [Ko98]. This increased the memory requirement by a factor of 5

and computation time by an additional factor of 5.

Extrapolations of the results for the Portland case study show that, evenwith this slowdown

the route planning part of TRANSIMS still uses significantly less computing time than the

micro-simulation.

Finally, we note that under certain circumstances the one-to-one approach chosen in this

paper may also be useful for ITS applications. This would be the case when customers would

require customized route suggestions, so that re-using a shortest path tree from another calcu-

lation may no longer be possible.

Acknowledgments: Research supported by the Department of Energy under Contract W-7405-

ENG-36. We thank the members of the TRANSIMS team in particular, Doug Anson, Chris

Barrett, Richard Beckman, Roger Frye, Terence Kelly, Marcus Rickert, Myron Stein and Patrice

Simon for providing the software infrastructure, pointers to related literature and numerous

discussions on topics related to the subject. The second author wishes to thank Myron Stein

for long discussion on related topics and for his earlier work that motivated this paper. We

also thank Joseph Cheriyan, S.S. Ravi, Prabhakar Ragde, R. Ravi and Aravind Srinivasan for

constructive comments and pointers to related literature. Finally, we thank the referees for

helpful comments and suggestions.

16

www.manaraa.com

References

[AMO93] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network Flows: Theory, Algorithms and

Applications, Prentice-Hall, Englewood Cliffs, NJ, 1993.

[AHU] A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer Algo-

rithms, Addison Wesley, Reading MA., 1974.

[BJM98] C. Barrett, R. Jacob, M. Marathe, Formal Language Constrained Path Problems to be pre-

sented at the Scandinavian Workshop onAlgorithmic Theory, (SWAT ’98), Stockholm,

Sweden, July 1998. Technical Report, Los Alamos National Laboratory, LA-UR 98-

1739.

[TR+95a] C. Barrett, K. Birkbigler, L. Smith, V. Loose, R. Beckman, J. Davis, D. Roberts and M.

Williams, An Operational Description of TRANSIMS, Technical Report, LA-UR-95-2393,

Los Alamos National Laboratory, 1995.

[CS97] R. Beckman et. al. TRANSIMS-Release 1.0 – The Dallas Fort Worth Case Study, LA-UR-

97-4502

[CGR96] B. Cherkassky, A. Goldberg and T. Radzik, Shortest Path algorithms: Theory and Exper-

imental Evaluation, Mathematical Programming, Vol. 73, 1996, pp. 129–174.

[GGK84] F. Glover, R. Glover and D. Klingman, Computational Study of am Improved Shortest

Path Algorithm, Networks, Vol. 14, 1985, pp. 65–73.

[EL82] R. Elliott and M. Lesk, “Route Finding in Street Maps by Computers and People,”

Proceedings of the AAAI-82 National Conference on Artificial Intelligence, Pittsburg, PA,

August 1982, pp. 258-261.

[HNR68] P. Hart, N. Nilsson, and B. Raphel, “A Formal Basis for the Heuristic Determination

of Minimum Cost Paths,” IEEE Trans. on System Science and Cybernetics, (4), 2, July

1968, pp. 100-107.

[HM95] Highway Research Board, Highway Capacity Manual, Special Report 209, National Re-

search Council, Washington, D.C. 1994.

[JBM98] R. Jacob, C. Barrett andM.MaratheModels and Efficient Algorithms for Routing Problems

in Time Dependent and Labeled Networks, Technical Report, LA-UR-98-xxxx, LosAlamos

National Laboratory, 1998.

[Ko98] G. Konjevod, et al. Experimental Analysis of Routing Algorithms in in Time Dependent and

Labeled Networks, in preparation, 1998.

[LR89] M. Luby and P Ragde, “A Bidirectional Shortest Path Algorithm with Good Average

Case Behavior,” Algorithmica, 1989, Vol. 4, pp. 551-567.

17

www.manaraa.com

[Ha92] R. Hassin, “Approximation schemes for the restricted shortest path problem,”Mathe-

matics of Operations Research, vol. 17, no. 1, pp. 36-42 (1992).

[Ma] Y. Ma, “A Shortest Path Algorithm with Expected Running time O(pV log V),” Mas-
ter’s Thesis, University of California, Berkeley.

[MCN91] J.F. Mondou, T.G. Crainic and S. Nguyen, Shortest Path Algorithms: A Computational

Study with C Programming Language, Computers and Operations Research, Vol. 18,

1991, pp. 767–786.

[NB97] K. Nagel and C. Barrett, Using Microsimulation Feedback for trip Adaptation for Realistic

Traffic in Dallas, International Journal of Modern Physics C, Vol. 8, No. 3, 1997, pp.

505-525.

[NB98] K. Nagel, Experiences with Iterated Traffic Microsimulations in Dallas, in D.E. Wolf and

M. Schreckenberg, eds. Traffic and Granular flow II Springer Verlag 1998. Technical

Report, Los Alamos National Laboratory, LA-UR 97-4776.

[Pa74] U. Pape, Implementation and Efficiency of Moore Algorithm for the Shortest Root Problem,

Mathematical Programming, Vol. 7, 1974, pp. 212–222.

[Pa84] S. Pallottino, Shortest Path Algorithms: Complexity, Interrelations and New Propositions,

Networks, Vol. 14, 1984, pp. 257–267.

[Po71] I. Pohl, “Bidirectional Searching,”Machine Intelligence, No. 6, 1971, pp. 127-140.

[SV86] R. Sedgewick and J. Vitter “Shortest Paths in Euclidean Graphs,” Algorithmica, 1986,

Vol. 1, No. 1, pp. 31-48.

[SI+97] T. Shibuya, T. Ikeda, H. Imai, S. Nishimura, H. Shimoura and K. Tenmoku, “Finding

Realistic Detour by AI Search Techniques,” Transportation Research Board Meeting,

Washington D.C. 1997.

[ZN98] F. B. Zhan and C. Noon, Shortest Path Algorithms: An Evaluation using Real Road Net-

works Transportation Science, Vol. 32, No. 1, (1998), pp. 65–73.

18

www.manaraa.com

Appendix: Description of Basic Algorithms

In this section, we describe the basic algorithms considered in this paper. Most of the results

in this section are not new; we recall them here for completeness and for description of experi-

mental results.

8.1 Dijkstra’s Algorithm

Dijkstra’s algorithm solves the single source shortest path problem on a weighted (un)directed

graphG(V;E), when all the edge weights are nonnegative. Let w(u; v) denote the weight of an
edge in the network.

Suppose we wish to find a shortest path from s to t. Dijkstra’s algorithm maintains a setS of vertices whose final shortest paths from the source s have been already computed. The
algorithm repeatedly finds a vertex in the set u 2 V � S which has the minimum shortest path
estimate, adds u to S and updates the shortest path estimates of all the neighbors of u that
are not in S. The algorithm continues until the terminal vertex is added to S. In general, it
is convenient to think of the vertices in the graph being divided into three classes during the

execution of the algorithm: (i) shortest path tree vertices – (those which have been added to S and
hence their shortest path has already been determined, (ii) unseen vertices – those for which the

distance estimate is 1 and (iii) fringe vertices – those that are adjacent to the vertices in S but
have themselves not been added to S. Now each iteration of the algorithm consists of adding a
fringe vertex with minimum distance to the shortest path tree and updating its neighbors to be

fringe vertices. Using this terminology, initially, only s is a shortest path tree vertex, neighbors
of s are fringe vertices, and others are unseen vertices.
DIJKSTRA’S ALGORITHM outlines the steps of the algorithm. In the remainder of the section,

we will use Æ(u) to denote the cost of a shortest path from s to u. We will also assume thatjV j = n and jEj = m. Also, for a given vertex v let N(v) denote the set of neighbors of v i.e.N(v) = fw j (v; w) 2 Eg. Finally, by the phrase extract a vertex from V wemean choose a vertex
and delete it from V .
8.2 Bidirectional Dijkstra’s Algorithm

The bidirectional algorithm has been used in the operations research community and ana-

lyzed by theoretical computer scientists providing quantitative reasons for its improved per-

formance. (See [LR89, Ma] for more details.) The bidirectional search algorithm consists of

two phases. In the first phase we alternate between two unidirectional searches: one forward

from s, growing a tree spanning a set of nodes S for which the minimum distance from s is
known, and the second that consists of growing a tree spanning a set of nodesD for which the
minimum distance from d is known. We alternately add one node to S and one to D until an
edge crossing from S toD is drawn. At this point, the shortest path is known to lie within the
search trees associate with S andD except for one additional edge from S toD.

19

www.manaraa.com

DIJKSTRA’S ALGORITHM:� Input: G(V;E) - a network, a source s and a destination vertex d and a non-negative
weight function l : E ! Z+.� 1. Initialization: Set S = �, d(s) = 0 and 8v 2 V � fsg; d(v) =1. Found = 0.

2. Iterative Step: while Found = 0 do

(a) Extract Minimum Step: Among all vertices v 2 V �S extract a vertex v with
minimum value of d(v). Set S = S [fvg. If v = d then set Found = 1.

(b) Decrease (Update) Key: For each edge (v; w), such that w 2 N(v), set d(w) =minfd(w); d(v) + w(v; w)g.� Output: A shortest path from s to d, i.e. a path p =< v0; : : : vk > where v0 = s andvk = d and the weight w(p)Pi=ki=1 w(vi�1; vi) is the minimum over all paths from s
to d

8.3 A Modification For Euclidean Graphs: A�-Algorithm
When the underlying network is Euclidean, it is possible to improve the average case perfor-

mance of Dijkstra’s algorithm. Euclidean graphs are defined as follows. The vertices of the

graph correspond to points in Rd and the weight of each edge is proportional to the Euclidean
distance between the two points. Typically, while solving problems on such graphs, the inher-

ent geometric information is ignored by the classical path finding algorithms. The basic idea

behind improving the performance of Dijkstra’s algorithm is from Sedgewick and Vitter [SV86]

and is originally attributed to Hart Nilsson and Raphel [HNR68] is simple and can be described

as follows. To build a shortest path from s to t, we use the original distance estimate for the
fringe vertex such as x, i.e. from s to x (as before) plus the Euclidean distance from x to t. Thus
we use global information about the graph to guide our search for shortest path from s to t. To
formalize this, defineD(x; y) to be the Euclidean distance between x and y and define l(x; y) to
be the shortest path from x to y in the graph. The length of the path as usual is equal to the sum
of the edge lengths that constitute the path: the weight of an edge (x; y) is defined to beD(x; y).
Now each fringe vertex x is assigned the following value: minwfl(s; w) + D(w; x)g + D(x; t)
The resulting algorithm runs much faster than Dijkstra’s algorithm on typical graphs for the

following reasons: (i) The shortest path tree grows in the direction of t and (ii) The search of the
shortest path can be terminated as soon as t is added to the to the shortest path tree. The cor-
rectness of the algorithm follows from the fact that D(x; t) is a lower bound on l(x; t). Another
way to interpret the algorithm and its correctness is by using the concept of vertex potentials –

an idea first used by Gabow.

Concept of Vertex Potentials. Each vertex is assigned a non-negative value D(x) – called its
potential. The intuition is, that we put the vertices in a mountainous region – i.e. we assign a

altitude to them. Furthermore we take the edge-weights as the energy needed to get from one

end of the edge to the other. Then the resulting energy (cost) needed to traverse an edge is the

original cost modified by the potential (energy) difference of the endpoints. This leads to the

20

www.manaraa.com

following formal definition:8(u; v) 2 E; ~l(u; v) = l(u; v) +D(u)�D(v)
The potentials are called admissible or feasible if the new lengths are all positive. The follow-

ing theorem shows that the the shortest paths in the graph with modified weights remains the

same.

Theorem 8.1 Let D be a set of admissible vertex potential. Then the weight of a path p =< s =v1; : : : vr = t > from s to t is given by~w(p) = i=nXi=1 l(vivi+1) +D(s)�D(t)
In other words the length of each path from s to t is changed by the same constant additive amount.
Thus if p is a shortest s� t path in the original graph then it is still the shortest path in the graph with
modified edge weights.

8.4 Modified A�
We briefly discuss some of the heuristic improvements to the basic A� algorithm that can be
used in practice. Again, recall that in many practical situations (including TRANSIMS), it is

not necessary to find exact shortest paths – approximately shortest paths suffice. We tried two

heuristic solutions in this context.

(1) The modified A� algorithm. Recall that the A� algorithm (implicitly) takes the estimate
(here the Euclidean distance) as an potential. As long as this estimate is a lower bound on the

shortest paths for all pairs of nodes, the graph modified by the potential still has only non-

negative weights and Dijkstra’s algorithm works correctly. If we now increase the influence

of the potential by multiplying it, this correctness doesn’t have to be maintained. Neverthe-

less we get an fast heuristic algorithm that produces simple path, that turn out to be still of

interestingly high quality. An important advantage of this method is, that we can choose this

“overdo parameter”, which reflects the strength of the potential all the way from 1 (correct) to1 in which case the algorithm always expands the node next (Euclidean) to destination, which
tends to be very fast. Note that the usefulness of this heuristic heavily depends on the graph it

is used on. As our results in Section 6 point out, it appears that an appropriate constant results

in a very good trade-off between quality of solution and the time required.

(2) Combining A� with Bidirectional Search The discussion in the above sections suggests
combining the bidirectional search heuristic with the A� search. One possible way to do it
is to use two potentials Ds(u) and Dt(u) for each vertex, the potentials reflecting the lower
bounds (usually geometric distances) of u from s and t. A naive implementation of this idea is
unfortunately incorrect, since the two potentials imply building shortest path trees from s andt. As shown in [SI+97], a modified potential suffices to ensure the correctness of the algorithm.

21

www.manaraa.com

9 Discussion on Data Structures

(1) Arrays versus Heaps. In a naive implementation of the algorithm using an array A, in
which for each vertex, vi we store the value of d(vi) in location A(i). In each iteration Extract
Minimum Key takesO(n) time (finding a minimum value in an unsorted array takesO(n) time)
and Decrease Key takes time O(deg(v)). Here deg(v) denotes the degree of v. The total running
time is therefore

Pv O(n+ deg(v)) = O(n2 +m). Using Binary Heaps (as has been done in the
current implementation of the algorithm), we can improve the running time. First consider

Extract Minimum Key operation. The time to do this is O(log n) since we simply pick the top of
the heap and then process the data structure to maintain the heap property (using HEAPIFY).

Next consider the Decrease Key operation. This operation takes time O(deg(v) log n) for the
following reason. We need to update the distance estimate for each of the deg(v) neighbors,
each operation taking time O(log n). The time to build the heap for the first time is O(n).
Thus the total running time of the algorithm is

Pv O((log n) + deg(v) log n)) = O(n log n +m log n) = O(n + m) log n. We also considered using Fibonacci Heaps. Our experimental
analysis revealed that typically the number of nodes that are kept in a heap is around 500; thus

using a more sophisticated data structure with higher constants was not likely to yield better

results in practice. Using Fibonacci heaps could potentially improve the theoretical running

time of the algorithm by of log(H), where H denotes the maximum heap size at any stage of
the execution. This implies an improvement of at most a factor of 9. But the constants with the
heap operations and the complicated code for implementing this data structure weigh more

heavily against it.

(2) Deferred Update. Recall that we need to update the values of the distance estimates in Step

2b of DIJKSTRA’S ALGORITHM. Assume that the heap is H, and degree of a node v being dv , it
would take roughly 2dv logH operations to update the distance estimates. The reason for this
is as follows: We can maintain an auxiliary array that keeps pointers to the nodes in the heap.

Every time a nodes distance estimate is updated, the node moves through the heap (as a part

of HEAPIFY operation) to settle in the final position. During the course of this other nodes

on its path also change positions. This implies that the pointed values for each of the nodes

need be updated. (We are assuming an array implementation of the Heap.) Another possible

way to do this is to insert multiple copies of a node in the heap. In this way, the time taken is

roughly proportional to adding these nodes plus the additional factor depending on the size

of the heap for future operations. Again, let dv denote the degree of a node and dmax be the
maximum degree. Then the heap size grows at most by a multiplicative factor of dmax. Since
the Heap operations take time roughly logH this implies that the total time for executing Step
2b is no more than dmax log(dmaxH) which is dmax(logH + log dmax). Typically, the average
degree of a node in the Case study network is 2:6 � 3 and you expect that it only gets inserted
roughly only by half its neighbors resulting in an average increase of no more than 4 on the
size of the heap. This implies that we spend only an additional additive factor of 2dv for each
run of Step 2b.

(3) Hash Tables for Storing Graphs. The graph we received from Dallas MPO is given using

22

www.manaraa.com

long Link and Node Id’s. Although the naming convention is useful in other contexts, such a

naming convention yields a inefficient use of the domain space. To illustrate the point, the link

and the node It’s given were typically made of 32 bits long. Thus the name space of for the

nodes is roughly 232. In contrast the number of nodes is roughly 104 � 212. Such a discrepancy
immediately motivated a use of hash tables to improve the name space utilization. We used a

Hash table of size roughly 214 This is achieving efficiency for two possible reasons. The first
and more important reason is that the array used to store the structure (information) associated

with each node is small enough to typically fit the first level cache. In contrast arrays of size 232
will never fit in a fast cache and thus will imply a significant increase in the processing time.

It is well known that memory access is significant bottleneck in the design of fast algorithms.

Another reason is that small words might be useful in minimizing the amount of memory

accessed in the inner loops of the algorithm. Also, note that the Hash table needs to be accessed

only during input and output of the plans and thus the process, even if it were expensive, does

not contribute significantly to the time the planner uses.

(4) Smart Label Reset We now discuss the improvement performed in the context of finding

paths for a number of travelers. Note that in Step 1 we need to set the distance estimates of all

the nodes to be initialized to infinity. This takesO(n) time per run of the algorithm. We instead
relabel only those nodes whose labels have changed during the course of the algorithm. This

simply consists of the nodes that were at anytime inserted in the heap. Since on an average the

total number of nodes visited is a small fraction of the total number of nodes (in fact is O(pn)
for bidirectional implementation) this yields significant improvements in the running time of

the algorithm.

(5) Heap tricks At the innermost loop of our heap implementation are two small details: one is

the test on a special case at the end of the heap. This test can be replaced by setting unused ele-

ments of the array to the value infinity, by this replacing an operation in the loop by (possibly)

one more iteration in the loop. The other possibility is to “streamline” the comparison at this

loop from possibly four down to three.

(6) struct of arrays vs. array of structs Following object oriented design goals one ends up

having different, independent arrays for storing data for the network, label-setting and the

shortest-path-tree module. Considering caching behavior of the processor it seems advanta-

geous to combine these to one big array of structs having entries for the different modules.

23

